Abstract
BackgroundHarmonic ratios (HRs), recurrence quantification analysis in the antero-posterior direction (RQAdetAP), and stride length coefficient of variation (CV) have recently been shown to characterize gait abnormalities and fall risk in people with Parkinson's disease (pwPD) at moderate disease stages. Research questionThis study aimed to i) assess the internal and external responsiveness to rehabilitation of HR, RQAdetAP, and CV, ii) identify the baseline predictors of normalization of the gait stability indexes, and iii) investigate the correlations between the gait indexes modifications (∆) and clinical and kinematic ∆s in pwPD at Hoehn and Yahr disease staging classification 3. MethodsThe trunk acceleration patterns of 21 pwPD and 21 age- and speed-matched healthy subjects (HSmatched) were acquired during gait using an inertial measurement unit at baseline (T0). pwPD were also assessed after a 4-week rehabilitation period (T1).Each participant's HR in the antero-posterior (HRAP), medio-lateral (HRML), and vertical directions, RQAdetAP, CV, spatio-temporal, and kinematic variables were calculated. ResultsAt T1, HRAP and HRML improved to normative values and showed high internal and external responsiveness. Lower HRs and higher pelvic rotation values at baseline were predictors of ∆HRs. A minimal clinically important difference (MCID) ≥ 21.5 % is required to normalize HRAP with 95 % probability. MCID ≥ 36.9 % is required to normalize HRML with 92 % probability. ∆HRAP correlated with ∆HRML and both correlated with ∆stride length and ∆pelvic rotation, regardless of ∆gait speed. RQAdetAP and step length CV were not responsive to rehabilitation. SignificanceWhen using inertial measurement units, HRAP and HRML can be considered as responsive outcome measures for assessing the effectiveness of rehabilitation on trunk smoothness during walking in pwPD at moderate disease stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.