Abstract
AbstractIt is shown that the Heisenberg Lie algebra of the nondegenerate harmonic oscillator leads to a basis {J+, J0, J−} of LASU(2). The Hamiltonian of the system is proportional to J0, and the basis elements give rise to irreducible tensors in the associative enveloping algebra of the Heisenberg Lie algebra. The construction of these irreducible tensors is studied with special attention being paid to the case in which they act upon a single vector space spanned by the harmonic oscillator basis functions. A tensor coupling rule is developed, and useful application is made of it in the calculation of general expressions for vibrational operators and their matrix elements. Throughout, the value of the additional algebraic quantum numbers (l, m) is emphasized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.