Abstract
A hybrid method for tissue imaging using dielectric and elastic properties is proposed and investigated with simple bi-layered breast model. In this method, local harmonic motion is generated in the tissue using a focused ultrasound probe. A narrow-band microwave signal is transmitted to the tissue. The Doppler component of the scattered signal, which depends on the dielectric and elastic properties of the vibrating region, is sensed. A plane-wave spectrum technique is used together with reciprocity theorem for calculating the response of a vibrating electrically small spherical tumor in breast tissue. The effects of operating frequency, antenna alignment and distance, and tumor depth on the received signal are presented. The effect of harmonic motion frequency on the vibration amplitude and displacement distribution is investigated with mechanical simulations using the finite element method. The safety of the method is analyzed in terms of microwave and ultrasound exposure of the breast tissue. The results show that the method has a potential in detecting tumors inside fibro-glandular breast tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.