Abstract
In this paper, we show that the projection of every compact Riemannian manifold of positive curvature onto a rank one symmetric space is harmonic. As a corollary, an infinite family of distinct harmonic morphisms with minimal circle fibers from the 7-dimensional homogeneous Aloff-Wallach spaces of positive curvature onto the 6-dimensional flag manifolds is given.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.