Abstract

A novel harmonic mode-locked fiber laser based on nonlinear multimode interference (NL-MMI) in a microfiber-assisted ultrafast optical switch is proposed in this Letter. The microfiber-assisted ultrafast optical switch can be obtained by tapering the splicing point of the graded-index multimode fiber (GIMF) and single-mode fiber, which not only helps to shorten the self-imaging period in GIMF to relax the strict requirement of NL-MMI on the length of multimode fiber, but also improves the harmonic order. In the experiment, with the waist diameter of ∼15 µm, the repetition rates of the fiber laser can be stably locked at 285 MHz, corresponding to the 16th-order harmonic mode-locking, with the pulse duration of 1.52 ps. Our results provide novel insight into the design of a high-repetition-rate laser and the application of microfibers in the mode-locking device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call