Abstract
An explicit lower bound for the mass of an asymptotically flat Riemannian 3-manifold is given in terms of linear growth harmonic functions and scalar curvature. As a consequence, a new proof of the positive mass theorem is achieved in dimension three. The proof has parallels with both the Schoen–Yau minimal hypersurface technique and Witten’s spinorial approach. In particular, the role of harmonic spinors and the Lichnerowicz formula in Witten’s argument is replaced by that of harmonic functions and a formula introduced by the fourth named author in recent work, while the level sets of harmonic functions take on a role similar to that of the Schoen–Yau minimal hypersurfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.