Abstract

The Hodge equations for 1-forms are studied on Beltrami’s projective disk model for hyperbolic space. Ideal points lying beyond projective infinity arise naturally in both the geometric and analytic arguments. An existence theorem for weakly harmonic 1-fields, changing type on the unit circle, is derived under Dirichlet conditions imposed on the noncharacteristic portion of the boundary. A similar system arises in the analysis of wave motion near a caustic. A class of elliptic-hyperbolic boundary-value problems is formulated for those equations as well. For both classes of boundary-value problems, an arbitrarily small lower-order perturbation of the equations is shown to yield solutions which are strong in the sense of Friedrichs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.