Abstract

ABSTRACTGallium nitride (GaN) is a robust piezoelectric semiconductor with excellent thermal and chemical stability, making it an attractive material for surface acoustic wave (SAW) sensors operating in high temperature and harsh environments. The sensitivity of SAW devices is proportional to the square of the operating frequency. Therefore, high operating frequencies into the GHz regime are desirable for SAW sensors. For GaN, this requires sub-micron interdigital transducers (IDTs) when devices are designed to operate at the fundamental Rayleigh mode frequency. The necessity for sub-micron IDTs can increase fabrication costs and complexity. By designing SAW devices to operate at harmonic frequencies, GHz operation can be realized with relatively large IDTs, resulting in simpler and more cost effective solutions for GaN based SAW sensors. Devices have previously been designed to operate at the 5th and higher harmonics on lithium niobate, but there are no reports of using this technique on GaN in the literature. In this study, GaN thin films have been grown via metal organic vapor phase epitaxy on sapphire substrates. SAW devices designed to operate at the fundamental frequency and higher harmonics have been fabricated and measured. Operating frequencies greater than 2 GHz have been achieved using IDTs with 5 μm fingers. In addition, reduction of electromagnetic feedthrough around the 5th and 7th harmonic is demonstrated through varying ground electrode geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.