Abstract
We introduce harmonic cross-correlation decomposition (HCD) as a tool to detect and visualize features in the frequency structure of multivariate time series. HCD decomposes multivariate time series into spatiotemporal harmonic modes with the leading modes representing dominant oscillatory patterns in the data. HCD is closely related to data-adaptive harmonic decomposition (DAHD) [Chekroun and Kondrashov, Chaos 27, 093110 (2017)10.1063/1.4989400] in that it performs an eigendecomposition of a grand matrix containing lagged cross-correlations. As for DAHD, each HCD mode is uniquely associated with a Fourier frequency, which allows for the definition of multidimensional power and phase spectra. Unlike in DAHD, however, HCD does not exhibit a systematic dependency on the ordering of the channels within the grand matrix. Further, HCD phase spectra can be related to the phase relations in the data in an intuitive way. We compare HCD with DAHD and multivariate singular spectrum analysis, a third related correlation-based decomposition, and we give illustrative applications to a simple traveling wave, as well as to simulations of three coupled Stuart-Landau oscillators and to human EEG recordings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical review. E
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.