Abstract

The main object of this paper is the Laplace operator on a class of fractals. First, we establish the concept of the renormalization of difference operators on post critically finite (p.c.f. for short) self-similar sets, which are large enough to include finitely ramified self-similar sets, and extend the results for Sierpinski gasket given in [10] to this class. Under each invariant operator for renormalization, the Laplace operator, Green function, Dirichlet form, and Neumann derivatives are explicitly constructed as the natural limits of those on finite pre-self-similar sets which approximate the p.c.f. self-similar sets. Also harmonic functions are shown to be finite dimensional, and they are characterized by the solution of an infinite system of finite difference equations

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.