Abstract
The statistical behavior of families of maps is important in studying the stability properties of chaotic maps. For a piecewise expanding map τ whose slope >2 in magnitude, much is known about the stability of the associated invariant density. However, when the map has slope magnitude ≤2 many different behaviors can occur as shown in (Keller in Monatsh. Math. 94(4): 313–333, 1982) for W maps. The main results of this note use a harmonic average of slopes condition to obtain new explicit constants for the upper and lower bounds of the invariant probability density function associated with the map, as well as a bound for the speed of convergence to the density. Since these constants are determined explicitly the results can be extended to families of approximating maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.