Abstract

The atomic force microscope (AFM) is a powerful tool for investigating surfaces at atomic scales. Harmonic balance and power balance techniques are introduced to analyze the tapping-mode dynamics of the atomic force microscope. The harmonic balance perspective explains observations hitherto unexplained in the AFM literature. A nonconservative model for the cantilever–sample interaction is developed. The energy dissipation in the sample is studied and the resulting power balance equations combined with the harmonic balance equations are used to estimate the model parameters. Experimental results confirm that the harmonic and power balance tools can be used effectively to predict the behavior of the tapping cantilever.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.