Abstract

This article presents a simple mathematical model for the output-voltage/input-voltage characteristics of the carbon nanotube field-effect transistor (CNTFET)-based and the single-electron tunnelling transistor (SET)-based inverting amplifiers. The model, basically a Fourier-series, yields closed-form expressions for the amplitudes of the harmonic and intermodulation components of the output voltage resulting from a multisinusoidal input voltage. The special case of a two-tone equal-amplitude input signal is considered in detail. The results show that the harmonic and intermodulation performance of the CNTFET-based and SET-based inverting amplifiers is strongly dependent on the values of the bias voltage and the amplitudes of the input tones. Moreover, the results show that for the CNTFET-based inverting amplifier, either the relative second-order or the relative third-order intermodulation component is dominant, while for the SET-based inverting amplifier, the relative third-order intermodulation is always dominant. The results also show that all the harmonics and intermodulation products may exhibit minima at different values of the input bias voltages and tone amplitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call