Abstract

A change in the photoelectrochemical behavior of a semiconductor–electrolyte system after transition from overall to local illumination of the electrode surface is studied. The proposed model accounts for charge interactions between illuminated and dark electrode portions and describes the frequency spectrum of photopotential for an electrode locally illuminated by a periodic sequence of light pulses a few nanoseconds in length. As shown with polycrystalline thin-film TiO2electrodes, local values of concentrations of ionized donors and flat-band potentials of semiconductor electrodes may be determined with a harmonic analysis of frequency spectra of photovoltaic responses. The possibility of using the proposed approach in photoelectrochemical microscopy is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call