Abstract

The analysis of linear threshold Boolean functions has recently attracted the attention of those interested in circuit complexity as well as ofthose interested in neural networks. Here a generalization oflinear threshold functions is defined, namely, polynomial threshold functions, and its relation to the class of linear threshold functions is investigated. A Boolean function is polynomial threshold if it can be represented as a sign function ofa polynomial that consists ofa polynomial (in the number ofvariables) number ofterms. The main result ofthis paper is showing that the class ofpolynomial threshold functions (which is called PT1 is strictly contained in the class ofBoolean functions that can be computed by a depth 2, unbounded fan-in polynomial size circuit of linear threshold gates (which is called LT2). Harmonic analysis ofBoolean functions is used to derive a necessary and sufficient condition for a function to be an S-threshold function for a given set S of monomials. This condition is used to show that the number of different S-threshold functions, for a given S, is at most 2 t'/ 1)lsl. Based on the necessary and sufficient condition, a lower bound is derived on the number of terms in a threshold function. The lower bound is expressed in terms of the spectral representation of a Boolean function. It is found that Boolean functions having an exponentially small spectrum are not polynomial threshold. A family of functions is exhibited that has an exponentially small spectrum; they are called functions. A function is constructed that is both semibent and symmetric to prove thatPT is properly contained in LT2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call