Abstract

We introduce a generalization of mutually inhibitory networks called homogeneous networks. Such networks have symmetric connection strength matrices that are circulant (one-dimensional case) or block circulant with circulant blocks (two-dimensional case). Fourier harmonics provide universal eigenvectors, and we apply them to several homogeneous examples: k-wta, k-cluster, on/center off/surround, and the assignment problem. We also analyze one nonhomogeneous case: the subset-sum problem. We present the results of 10000 trials on a 50-node k-cluster problem and 100 trials on a 25-node subset-sum problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.