Abstract

The harmonic admittance is known as a powerful tool for analyzing the excitation and propagation of surface acoustic waves (SAWs) in periodic electrode arrays. In particular, the dispersion relationships for open- and short-circuited systems are indicated, respectively, by the zeros and poles of the harmonic admittance. Here, we show that a strict reverse relationship also exists: the harmonic admittance of a periodic system of electrodes may always be expressed as the ratio of two determinants, which have been specifically constructed to describe the eigen-modes of the open- and short-circuited systems. There is no need to solve these equations to find the admittance. The existence of a connection between the excitation and propagation problems was recognized within the coupling-of-modes theory by Chen and Haus and was recently used to model surface transverse waves by Koskela et al., but a rigorous mathematical proof was only found later by Biryukov. Here, we reproduce this theorem in detail, give some examples of calculations based on this theorem, and compare the results with measured admittance curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.