Abstract
Glutamate is the predominant excitatory amino acid neurotransmitter in the mammalian central nervous system (CNS). Glutamate transporter EAAT2/GLT-1 is the physiologically dominant astroglial protein that inactivates synaptic glutamate. Previous studies have shown that EAAT2 dysfunction leads to excessive extracellular glutamate and may contribute to various neurological disorders including amyotrophic lateral sclerosis (ALS). The recent discovery of the neuroprotective properties of ceftriaxone, a beta lactam antibiotic, suggested that increasing EAAT2/GLT-1 gene expression might be beneficial in ALS and other neurological/psychiatric disorders by augmenting astrocytic glutamate uptake. Here we report our efforts to develop a new screening assay for identifying compounds that activate EAAT2 gene expression. We generated fetal derived-human immortalized astroglial cells that are stably expressing a firefly luciferase reporter under the control of the human EAAT2 promoter. When screening a library of 1040 FDA approved compounds and natural products, we identified harmine, a naturally occurring beta-carboline alkaloid, as one of the top hits for activating the EAAT2 promoter. We further tested harmine in our in vitro cell culture systems and confirmed its ability to increase EAAT2/GLT1 gene expression and functional glutamate uptake activity. We next tested its efficacy in both wild type animals and in an ALS animal model of disease and demonstrated that harmine effectively increased GLT-1 protein and glutamate transporter activity in vivo. Our studies provide potential novel neurotherapeutics by modulating the activity of glutamate transporters via gene activation. This article is part of a Special Issue entitled ‘Trends in Neuropharmacology: In Memory of Erminio Costa’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.