Abstract

Bone homeostasis is controlled by the balance between osteoblastic bone formation and osteoclastic bone resorption. Excessive bone resorption is involved in the pathogenesis of bone-related disorders such as osteoporosis, arthritis and periodontitis. To obtain new antiresorptive agents, we searched for natural compounds that can inhibit osteoclast differentiation and function. We found that harmine, a β-carboline alkaloid, inhibited multinucleated osteoclast formation induced by receptor activator of nuclear factor-κB ligand (RANKL) in RAW264.7 cells. Similar results were obtained in cultures of bone marrow macrophages supplemented with macrophage colony-stimulating factor and RANKL, as well as in cocultures of bone marrow cells and osteoblastic UAMS-32 cells in the presence of vitamin D 3 and prostaglandin E 2. Furthermore, harmine prevented RANKL-induced bone resorption in both cell and bone tissue cultures. Treatment with harmine (10 mg/kg/day) also prevented bone loss in ovariectomized osteoporosis model mice. Structure–activity relationship studies showed that the C3–C4 double bond and 7-methoxy group of harmine are important for its inhibitory activity on osteoclast differentiation. In mechanistic studies, we found that harmine inhibited the RANKL-induced expression of c-Fos and subsequent expression of nuclear factor of activated T cells (NFAT) c1, which is a master regulator of osteoclastogenesis. However, harmine did not affect early signaling molecules such as ERK, p38 MAPK and IκBα. These results indicate that harmine inhibits osteoclast formation via downregulation of c-Fos and NFATc1 induced by RANKL and represses bone resorption. These novel findings may be useful for the treatment of bone-destructive diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call