Abstract

With the development of large-scale fell cell vehicle demonstration project worldwide, the global number of hydrogen refueling stations has increased rapidly in recent years. The external safety of hydrogen refueling stations has always been a public concern for its further development. This paper examines the harm effect distances of severe accidents for a gaseous hydrogen refueling station. First, different accident scenarios are assumed and their subsequent consequences are calculated, including physical explosion, jet fire, flash fire and confined vapor cloud explosion. Results show that physical explosion and worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous release and continuous release, respectively. This indicates that they may be used as decisive consequences to the determination of safe distances. Second, the influences of different factors on harm effect distances are investigated, including those of release inventory, release pressure, release height, release angle, release diameter and wind velocity. Then, based on these results, several potential hazard mitigation measures are proposed such as elevating hydrogen equipment, using smaller vessel and adopting smaller pipe work, if reasonably practicable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.