Abstract

Abstract Despite their effectiveness, linear models for realized variance neglect measurement errors on integrated variance and exhibit several forms of misspecification due to the inherent nonlinear dynamics of volatility. We propose new extensions of the popular approximate long-memory heterogeneous autoregressive (HAR) model apt to disentangle these effects and quantify their separate impact on volatility forecasts. By combining the asymptotic theory of the realized variance estimator with the Kalman filter and by introducing time-varying HAR parameters, we build new models that account for: (i) measurement errors (HARK), (ii) nonlinear dependencies (SHAR) and (iii) both measurement errors and nonlinearities (SHARK). The proposed models are simply estimated through standard maximum likelihood methods and are shown, both on simulated and real data, to provide better out-of-sample forecasts compared to standard HAR specifications and other competing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.