Abstract

The study of bilinear operators associated to a class of non-smooth symbols can be reduced to ther study of certain special bilinear cone operators to which a time frequency analysis using smooth wave-packets is performed. In this paper we prove that when smooth wave-packets are replaced by Walsh wave-packets the corresponding discrete Walsh model for the cone operators is not only L p L^{p} -bounded, as Thiele has shown in his thesis for the Walsh model corresponding to the bilinear Hilbert transform, but actually improves regularity as it maps into a Hardy space. The same result is expected to hold for the special bilinear cone operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.