Abstract

In this paper we prove new inequalities describing the relationship between the “size” of a function on a compact homogeneous manifold and the “size” of its Fourier coefficients. These inequalities can be viewed as noncommutative versions of the Hardy-Littlewood inequalities obtained by Hardy and Littlewood [17] on the circle. For the example case of the group SU(2) we show that the obtained Hardy-Littlewood inequalities are sharp, yielding a criterion for a function to be in Lp(SU(2)) in terms of its Fourier coefficients. We also establish Paley and Hausdorff-Young-Paley inequalities on general compact homogeneous manifolds. The latter is applied to obtain conditions for the Lp-Lq boundedness of Fourier multipliers for 1<p≤2≤q<∞ on compact homogeneous manifolds as well as the Lp-Lq boundedness of general (non-invariant) operators on compact Lie groups. We also record an abstract version of the Marcinkiewicz interpolation theorem on totally ordered discrete sets, to be used in the proofs with different Plancherel measures on the unitary duals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.