Abstract
Recently, with the spread of Internet of Things (IoT) devices, embedded hardware devices have been used in a variety of everyday electrical items. Due to the increased demand for embedded hardware devices, some of the IC design and manufacturing steps have been outsourced to third-party vendors. Since malicious third-party vendors may insert malicious circuits, called hardware Trojans, into their products, developing an effective hardware-Trojan detection method is strongly required. In this paper, we propose 25 hardware-Trojan features focusing on the structure of trigger circuits for machine-learning-based hardware-Trojan detection. Combining the proposed features into 11 existing hardware-Trojan features, we totally utilize 36 hardware-Trojan features for classification. Then we classify the nets in an unknown netlist into a set of normal nets and Trojan nets based on a random-forest classifier. The experimental results demonstrate that the average true positive rate (TPR) becomes 64.2% and the average true negative rate (TNR) becomes 100.0%. They improve the average TPR by 14.8 points while keeping the average TNR compared to existing state-of-the-art methods. In particular, the proposed method successfully finds out Trojan nets in several benchmark circuits, which are not found by the existing method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.