Abstract

Human-Computer interfaces can use different signals from the body in order to control external devices. Beside muscle activity (EMG-Electromyogram), eye movements (EOGElectrooculogram) and respiration also brain activity (EEG-Electroencephalogram) can be used as input signal. EEG-based brain-computer interface (BCI) systems are realized either with (i) slow cortical potentials, (ii) the P300 response, (iii) steady-state visual evoked potentials (SSVEP) or (iv) motor imagery. Potential shift of the scalp EEG over 0.5 – 10 s are called slow cortical potentials (SCPs). Reduced cortical activation goes ahead with positive SCPs, while negative SCPs are associated with movement and other functions involving cortical activation (Birbaumer, 2000). People are able to learn how to control these potentials, hence it is possible to use them for BCIs as Birbaumer and his colleagues did (Birbaumer, 2000, Elbert, 1980). The main disadvantage of this method is the extensive training time to learn how to control the SCPs. Users need to train in several 1-2 h sessions/week over weeks or months. The P300 wave was first discovered by Sutton (Sutton, 1965). It elicits when an unlikely event occurs randomly between events with high probability. In the EEG signal the P300 appears as a positive wave about 300 ms after stimulus onset. Its main usage in BCIs is for spelling devices, but one can also use it for control tasks (for example games (Finkea, 2009) or navigation (e.g. to move a computer-mouse (Citi, 2008)). When using P300 as a spelling device, a matrix of characters is shown to the subject. Now the rows and columns (or in some paradigms the single characters) of the matrix are flashing in random order, while the person concentrates only on the character he/she wants to spell. For better concentration, it is recommended to count how many times the character flashes. Every time the desired character flashes, a P300 wave occurs. As the detection of one single event would be imprecise, more than one trial (flashing of each character) has to be carried out to achieve a proper accuracy. Krusienski et al. (Krusienski, 2006) evaluated different classification techniques for the P300 speller, wherein the stepwise linear discriminant analysis (SWLDA) and the Fisher’s linear discriminant analysis provided the best overall performance and implementation characteristics. A recent study (Guger 2009), performed on 100 subjects, revealed an average accuracy level of 91.1%, with a spelling time of 28.8 s for one single character. Each character was selected out of a matrix of 36 characters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call