Abstract

The paper aims to address the design, simulation and implementation processes of a fuzzy logic controller to regulate in real-time the speed of an armature-controlled DC motor using hardware/software codesign methodology. A fuzzy logic control law and a digital pulse width modulation (DPWM) technique are used as a computational solution, while the implementation is carried on a reconfigurable computing hardware platform. The computationally intensive tasks are implemented as custom hardware accelerators using VHDL, while data flow and data control are implemented in software using the system-on-programmable-chip (SoPC) approach. Computer simulation results show the effectiveness and merit of this design flow. In addition, the real-time applicability of this heterogeneous controller is exemplified on an armature-controlled DC motor platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call