Abstract

Significant advances in various relevant science and engineering disciplines have propelled the development of more advanced, yet reliable and practical underwater vehicles. A great array of vehicle types and applications has been produced along with a wide range of innovative approaches for enhancing the performance of unmanned underwater vehicle (UUV). These recent advances enable the extension of UUVs’ flight envelope comparable to that of manned vehicles. For undertaking longer missions, therefore more advanced control and navigation will be required to maintain an accurate position over larger operational envelope particularly when a close proximity to obstacles (such as manned vehicles, pipelines, underwater structures) is involved. In this case, a sufficiently good model is prerequisite of control system design. System evaluation and testing of unmanned underwater vehicles in certain environment can be tedious, time consuming and expensive. This paper, focused on developing dynamic model of UUV for the purpose of guidance and control. Along with this a HILS (Hardware-In-the-Loop Simulation) based novel framework for rapid construction of testing scenarios with embedded systems has been investigated. The modeling approach is implemented for the AUV Squid, an autonomous underwater vehicle that was designed, developed and tested by research team at Center for Unmanned System Studies at Institut Teknologi Bandung.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.