Abstract

Hardware Trojan attack in the form of malicious modification of a design has emerged as a major security threat. Sidechannel analysis has been investigated as an alternative to conventional logic testing to detect the presence of hardware Trojans. However, these techniques suffer from decreased sensitivity toward small Trojans, especially because of the large process variations present in modern nanometer technologies. In this paper, we propose a novel noninvasive, multiple-parameter side-channel analysisbased Trojan detection approach. We use the intrinsic relationship between dynamic current and maximum operating frequency of a circuit to isolate the effect of a Trojan circuit from process noise. We propose a vector generation approach and several design/test techniques to improve the detection sensitivity. Simulation results with two large circuits, a 32-bit integer execution unit (IEU) and a 128-bit advanced encryption standard (AES) cipher, show a detection resolution of 1.12 percent amidst ±20 percent parameter variations. The approach is also validated with experimental results. Finally, the use of a combined side-channel analysis and logic testing approach is shown to provide high overall detection coverage for hardware Trojan circuits of varying types and sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.