Abstract

Modern integrated circuit design manufacturing involves outsourcing intellectual property to third-party vendors to cut down on overall cost. Since there is a partial surrender of control, these third-party vendors may introduce malicious circuit commonly known as Hardware Trojan into the system in such a way that it goes undetected by the end-users’ default security measures. Therefore, to mitigate the threat of functionality change caused by the Trojan, a technique is proposed based on the testability measures in gate level netlists using Machine Learning. The proposed technique detects the presence of Trojan from the gate-level description of nodes using controllability and observability values. Various Machine Learning models are implemented to classify the nodes as Trojan infected and non-infected. The efficiency of linear discriminant analysis obtains an accuracy of 92.85 %, precision of 99.9 %, recall of 80%, and F1 score of 88.8% with a latency of around 0.9 ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call