Abstract

In recent years, the strategy of co-designing Hardware/Software (HW/SW) systems has been widely adopted to exploit the synergy between both approaches thanks to technological advances that have led to more powerful devices providing an increasingly better cost–benefit trade-off. This paper presents an HW/SW system for the detection of multiple circles in digital images based on a genetic algorithm. It is implemented on an Ultra96-v2 development board, which contains a Xilinx Zynq UltraScale+ MPSoC device and supports a Linux operating system that facilitates application development. The design is powered by developing an interactive computing environment by means of the Jupyter Notebook platform, in which different programming languages coexist. The specific advantages of each of these languages have been used to describe the hardware component that accelerates the evolutionary computation for circle detection (VHDL), to execute SW-HW interaction functions, as well as the pre- and post-processing of the images (ANSI-C) and to code, evaluate, and document the system execution process (Python). As a result, a computationally efficient application was obtained, with high accuracy in the detection of circles in synthetic and real images, and with a high degree of reconfigurability that provides the user with the necessary tools to incorporate it in a specific area of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.