Abstract

In this two-part paper, a design methodology for reduced-complexity digital delta-sigma modulators (DDSMs) based on error masking is presented. Rules for selecting the wordlengths of the stages in multistage architectures are elaborated. We show that the hardware requirement can be reduced by up to 20% compared with a conventional design, without sacrificing performance. Simulation results confirm theoretical predictions. Part I addresses multistage noise-shaping DDSMs, whereas Part II focuses on single-quantizer DDSMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.