Abstract

In this article we study hardware-oriented versions of the recently appeared Layered ORthogonal lattice Detector (LORD) and Turbo LORD (T-LORD). LORD and T-LORD are attractive Multiple-Input Multiple-Output (MIMO) detection algorithms, that aim to approach the optimal Maximum-Likelihood (ML) and Maximum-A-Posteriori (MAP) performance, respectively, yet allowing a complexity quadratic in the number of transmitting antennas rather than exponential. LORD and T-LORD are also well suited to a hardware (e.g., ASIC or FPGA) implementation because of their regularity, parallelism, deterministic latency, and complexity. Nevertheless, their complexity is still high in case of high cardinality constellations, such as the 64-QAM foreseen by the 802.11n standard. We show that, when only global latency constraints exist, e.g., a fixed time to detect the whole OFDM symbol, the LORD and T-LORD complexity can be remarkably reduced, still approaching the ML and MAP performance, respectively. Notwithstanding the suboptimal low-complexity and hardware-oriented implementation, LORD and T-LORD approach the EXtrinsic Information Transfer of the ML and MAP detectors, respectively. To focus on a specific setting, we consider the indoor MIMO wireless LAN 802.11n standard, taking into account errors in channel estimation and a frequency selective, spatially correlated channel model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.