Abstract

Edge artificial intelligence or edge intelligence is an ever-growing research area due to the current popularization of the Internet of Things. Unfortunately, incorporation of artificial intelligence (AI) in smart devices operating at the edge is a challenging task due to the power-hungry characteristics of deep learning implementations, such as convolutional neural networks (CNNs). As a feasible alternative, reservoir computing (RC) has attracted a lot of attention in the field of machine learning due to its promising performance in a wide range of applications. In this work, we propose a simple hardware-optimized circuit design of RC systems presenting high energy-efficiency capacities that fulfill the low power requirements of edge intelligence applications. As a proof of concept, we used the proposed design for the implementation of a low-power audio event detection (AED) application in FPGA. The measurements and simulation results obtained show that the proposed approach may provide significant accuracy with the advantage of presenting ultra-low-power characteristics (the energy efficiency estimated is below the microjoule per inference). These results make the proposed system optimal for edge intelligence applications in which energy efficiency and accuracy are the key issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.