Abstract
While MPC is the state-of-the-art approach for building heating control with proven cost savings and improvement in energy flexibility, in practice, buildings are operated by simple rules-based controllers which are not able to accomplish an energy efficient and flexible operation. This paper explores the suitability of deep neural networks for approximating optimal economic MPC strategies for this task. In particular, we develop a convolutional neural network controller and test it in a closed-loop simulation against MPC and an improved predictive rule-based controller. The learned controller is easy to implement and fast to process on standard building control hardware. The feasibility, performance and robustness of the learned controller is validated in a realistic hardware-in-the-loop test setup for the demand-responsive operation of a heat pump combined with a storage tank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.