Abstract

A nonlinear control technique pertaining to attitude synchronization problems is presented for formation flying spacecraft by utilizing the State-Dependent Riccati Equation (SDRE) technique. An attitude controller consisting of relative control and absolute control is designed using a reaction wheel assembly for regulator and tracking problems. To achieve effective relative control, the selective state-dependent connectivity is also adopted. The global asymptotic stability of the controller is confirmed using the Lyapunov theorem and is verified by Monte-Carlo simulations. An air-bearing-based Hardware-In-the-Loop Simulator (HILS) is also developed to validate the proposed control laws in real-time environments. The SDRE controller is discretized for implementation of a real-time processor in the HILS. The pointing errors are about 0.2° in the numerical simulations and about 1° in the HILS simulations, and experimental simulations confirm the effectiveness of the control algorithm for attitude synchronization in a spacecraft formation flying mission. Consequently, experiments using the HILS in a real-time environment can appropriately perform spacecraft attitude synchronization algorithms for formation flying spacecraft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.