Abstract

PurposeThis paper aims to propose an improved and computationally efficient motion simulation of a flexible variable sweep aircraft.Design/methodology/approachThe motion simulation is performed on hardware-in-the-loop simulation setup using 6 degree-of-freedom motion platform. The dynamic model of a flexible variable sweep aircraft, Rockwell B-1 Lancer is presented using equations of motions for combined rigid and flexible motions. The peak filter is introduced as a new method to separate flexible motion from aircraft motion data. Standard adaptive washout filter is modified and redesigned for an accurate flexible aircraft flight simulation. The flight data are generated using FlightGear software. Another motion profile with significant oscillations is also tested. The peak filter and the modified adaptive washout filter both are used to process the data according to the motion envelop of motion platform.FindingsThe performance of the modified adaptive washout filter is evaluated using hardware-in-the-loop simulation setup and results are compared with the standard adaptive washout filter. Results exhibit that the proposed method is computationally cost-effective and improves the motion simulation of flexible aircraft with close to realistic motion cues.Originality/valueThe proposed work presents motion simulation of a flexible aircraft by introducing a peak filter to extract flexible motion in contrast to the traditional motion separation methods. Also, a modified adaptive washout filter is designed and implemented in place of the traditional washout filters for improved flexible aircraft flight motion simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call