Abstract

Providing quality-of-service guarantees in both cell- and packet-based networks requires the use of a scheduling algorithm in the switches and network interfaces. These algorithms need to be implemented in hardware in a high-speed switch. The authors present a number of approaches to implement scheduling algorithms in hardware. They begin by presenting a general methodology for the design of timestamp-based fair queuing algorithms that provide the same bounds on end-to-end delay and fairness as those of weighted fair queuing, yet have efficient hardware implementations. Based on this general methodology, the authors describe two specific algorithms, frame-based fair queuing and starting potential-based fair queuing, and discuss illustrative implementations in hardware. These algorithms may be used in both cell switches and packet switches with variable-size packets. A methodology for combining a traffic shaper with this class of fair queuing schedulers is also presented for use in network interface devices, such as an ATM segmentation and reassembly device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.