Abstract

AbstractThis paper presents a hardware implementation of a controller to generate adaptive gait patterns for quadruped robots inspired by biological Central Pattern Generators (CPGs). The basic CPGs are modeled as non-linear oscillators which are connected one to each other through coupling parameters that can be modified for different gaits. The proposed implementation is based on an specific digital module for CPGs attached to a soft-core processor so as to provide an integrated and flexible embedded system. The system is implemented on a Field Programmable Gate Array (FPGA) device providing a compact and low power consumption solution for generating periodic rhythmic patterns in robot control applications. Experimental results show that the proposed implementation is able to generate suitable gait patterns, such as walking, trotting, and galloping.KeywordsField Programmable Gate ArrayHardware ImplementationCentral Pattern GeneratorQuadruped RobotLocomotion ControlThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call