Abstract

This study presents a multi-level 2D discrete wavelet transform (DWT) architecture without off-chip RAM. Existing architectures use one off-chip RAM to store the image data, which increases the complexity of the system. For one-chip design, line-based architecture based on modified lifting scheme is proposed. By replacing the multipliers with canonic sign digit multipliers, a critical path of one full-adder delay is achieved. As per theoretical estimate, for three-level 2D DWT with an image of N × N size, the proposed architecture requires 123 adders, 66 subtracters, 167 registers, temporal memory of 7.5N words and input RAM of 3N bytes. The estimated hardware requirement shows that for the image size of 512 × 512 and three-level DWT, the proposed architecture involves at least 14.1% less transistor-delay-product than existing architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.