Abstract

This paper describes the efficient implementation of Maximum Distance Separable (MDS) mappings and Substitution-boxes (S-boxes) in gate-level hardware for application to Substitution-Permutation Network (SPN) block cipher design. Different implementations of parameterized MDS mappings and S-boxes are evaluated using gate count as the space complexity measure and gate levels traversed as the time complexity measure. On this basis, a method to optimize MDS codes for hardware is introduced by considering the complexity analysis of bit parallel multipliers. We also provide a general architecture to implement any invertible S-box which has low space and time complexities. As an example, two efficient implementations of Rijndael, the Advanced Encryption Standard (AES), are considered to examine the different tradeoffs between speed and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.