Abstract

Attackers target many different types of computer systems in use today, exploiting software vulnerabilities to take over the device and make it act maliciously. Reports of numerous attacks have been published, against the constrained embedded devices of the Internet of Things, mobile devices like smartphones and tablets, high-performance desktop and server environments, as well as complex industrial control systems. Trusted computing architectures give users and remote parties like software vendors guarantees about the behaviour of the software they run, protecting them against software-level attackers. This paper defines the security properties offered by them, and presents detailed descriptions of twelve hardware-based attestation and isolation architectures from academia and industry. We compare all twelve designs with respect to the security properties and architectural features they offer. The presented architectures have been designed for a wide range of devices, supporting different security properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.