Abstract

All digital methods developed for frequency measurement suffer from one or more factors such as superimposed noise, non-linear static characteristics, high-order harmonics and slow response because of complex computations. The measurement speed of conventional analogue methods is constant and depends on the input signal frequency. Additionally, as a result of deviated and/or spurious zero-crossings caused by the DC component, noise and high-order harmonics in the AC waveform, it is hard to attain the desired accuracy with conventional analogue methods. In this study, a phase-locked loop and microcontroller-based hybrid frequency measurement method developed by the modification of conventional zero-crossing is presented. The input signal, with harmonics and noise, and the frequency can be measured in a fast and accurate way with the proposed method, whose real-time application is extremely simple; this is demonstrated in a comparable manner to the studies in the literature. The measurement method presented in this study is fast, cheap, reliable, accurate and suitable for real-time applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.