Abstract
Achieving high performance has traditionally been a challenge in the image processing field. Even though many useful image processing algorithms can be described quite compactly with few operations, these operations must be repeated over large amounts of data and usually demand substantial computational effort. With the rapid evolution of digital imaging technology, the computational load of image processing algorithms is growing due to increasing algorithm complexity and increasing image size. This scenario typically leads to choose a high-end microprocessor for image processing tasks. However, most image processing systems have quite strict requirements in other aspects, such as size, cost, power consumption and time-to-market, that cannot be easily satisfied by just selecting a more powerful microprocessor. Meeting all these requirements is becoming increasingly challenging. In consumer products, image processing functions are usually implemented by specialized processors, such as Digital Signal Processors (DSPs) or Application Specific Standard Products (ASSPs). However, as image processing complexity increases, DSPs with a large number of parallel units are needed. Such powerful DSPs become expensive and their performance tends to lag behind image processing requirements. On the other hand, ASSPs are inflexible, expensive and time-consuming to develop. The inherent parallelism in image processing suggests the application of High Performance Computing (HPC) technology (Marsh, 2005); (Liu & Prasanna, 1998). As a matter of fact, image processing and computer vision have been the most common areas proposed for the use of HPC. However, actual applications have been few because HPC has failed to satisfy cost, size or power consumption requirements that are usually required in most image processing applications (Webb, 1994). Hardware acceleration is a suitable way to increase performance by using dedicated hardware architectures that perform parallel processing. With the advent of Field Programmable Gate Array (FPGA) technology, dedicated hardware architectures can be implemented with lower costs. In fact, FPGAs are the cornerstone of Reconfigurable Computing (Todman et al., 2005), a technology that offers unprecedented levels of performance along with a large flexibility. On the one hand, performance can be increased dramatically with the use of custom processing units working in parallel. These units can be mapped to a reconfigurable fabric to obtain the benefits of an application specific approach at the cost of a general purpose product. Cost and time-to-market are also greatly reduced as
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.