Abstract

A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman (RSA) cryptography is proposed. Residue number system (RNS) is introduced to realize high parallelism, thus all the elements under the same base are independent of each other and can be computed in parallel. Moreover, a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm, which facilitates hardware implementation. Based on transport triggered architecture (TTA), the proposed architecture is designed to evaluate the performance and feasibility of the algorithm. With these optimizations, a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.