Abstract
We propose a new parallelization scheme for the hmmsearch function of the HMMER software, in order to target FPGA technology. hmmsearch is a very compute intensive software for biological sequence alignment, based on profile hidden Markov models. We derive a flexible, generic, scalable hardware parallel architecture which can accelerate the core of hmmsearch by nearly two orders of magnitude, without modifying the original algorithm of this software. Our derivation is based on the expression of the algorithm as a set of recurrence equations, and we show in a systematic way how a very efficient parallel version of the algorithm can be found by combining scheduling, projection, partitioning, pipelining and precision analysis. We present the performance of the implementation of this parallel algorithm on a FPGA platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.