Abstract

Infrared small target detection is a key technology with a wide range of applications, and the complex background and low signal-to-noise ratio characteristics of infrared images can greatly increase the difficulty and error rate of small target detection. In this paper, an uncertainty measurement method based on local component consistency is proposed to suppress the complex background and highlight the detection target. The method analyzes the local signal consistency of the image. It then constructs a confidence assignment function and uses the mutation entropy operator to measure local uncertainty. Then, the target energy information is introduced through an energy-weighting function to further enhance the signal. Finally, the target is extracted using an adaptive threshold segmentation algorithm. The experimental results show that the algorithm can effectively detect small infrared targets in complex backgrounds. And, the algorithm is at the leading edge in terms of performance; the processing frame rate can reach 3051 FPS (frame per second), 96 FPS, and 54 FPS for image data with a resolution of 256 × 256, 1920 × 1080, and 2560 × 1440, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.