Abstract

Directed energy deposition (DED) of Inconel 718 is of critical importance for the repair of aerospace components, which have tight tolerances for certification, particularly on mechanical properties. Significant hardness variation has been seen throughout DED manufactured Inconel 718 components, suggestive of variation in mechanical properties, which must be understood such that the variation can either be removed, or implemented within the design in line with regulatory guidance. In this work, γʹ precipitation was theorised to be the cause of hardness variation throughout the component, despite Inconel 718 conventionally being regarded as a γʺ strengthened alloy. A simple precipitation potential model based on a moving heat source was found to correlate with the measured hardness and explain the hardness distribution observed. In addition, it has been shown that sections under a critical thickness of 2 mm never reach the peak hardness in the as-built condition. This understanding allows for the development of in-situ heat treatment strategies to be developed for microstructural, and hence, mechanical property optimisation, necessary for repair technologies where post processing steps are limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.