Abstract

A Roman dominating function (RDF) of a graph $$ G=(V,E) $$ is a function $$f : V \rightarrow \{0, 1, 2\}$$ such that every vertex assigned the value 0 is adjacent to a vertex assigned the value 2. A global Roman dominating function (GRDF) of a graph $$ G=(V,E) $$ is a function $$f : V \rightarrow \{0, 1, 2\}$$ such that f is a Roman dominating function of both G and its complement $$ \overline{G} $$ . The weight of f is $$f(V) =\varSigma _{u\in V} f(u)$$ . The minimum weight of a GRDF in a graph G is known as global Roman domination number of G and is denoted by $$\gamma _{gR}(G)$$ . Minimum Global Roman Domination is to find a global Roman dominating function of minimum weight and Decide Global Roman Domination is the decision version of Minimum Global Roman Domination. In this paper, we show that Decide Global Roman Domination is NP-complete for bipartite graphs and chordal graphs. We also show that Minimum Global Roman Domination cannot be approximated within a factor of $$ (\frac{1}{2}-\epsilon )\ln \vert V \vert $$ for any $$ \epsilon >0 $$ unless $$ \textsf {P}=\textsf {NP} $$ . On the positive side, we propose an $$O(\ln |V|)$$ -approximation algorithm for Minimum Global Roman Domination for any graph $$G=(V,E)$$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.