Abstract

A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node ν ∈ G stores its distance to the so-called hubs Sν ⊆ V, chosen so that for any u,ν ∈ V there is w ∈ Su ∩ Sv belonging to some shortest uv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block.Our interest lies in hub labelings of sparse graphs, i.e., those with |E(G)| = O (n), for which we show a lowerbound of n 2O (√log n) for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(√n RS (n)c) for some 0

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.