Abstract

The recently developed nanoindentation technique was used to measure hardness and Young's modulus of small filler particles in resin composites and other dental restoratives. This technique eliminates the need to visualize indentations. Load and displacement are continuously monitored during a loading-unloading sequence, and hardness as well as Young's modulus are then calculated from the load-displacement curves taking into account the geometry of the indenter. Thirteen posterior composites, 3 dental ceramics for CAD/CAM restorations, 1 sintered porcelain, and 1 amalgam were investigated in this study. The results were compared to the hardness and Young's modulus determined by nanoindentation of human enamel. Of the dental materials tested, only five materials contain inorganic filler particles with a nanohardness not statistically different from that of enamel. The predominant fillers in all other materials, except amalgam and the prepolymerized resin fillers in Bell Firm PX, were found to be significantly harder. The dental restorative materials, except the alloy phase in amalgam, were composed of particles with a Young's modulus significantly lower than that of human enamel. The alloy phase in amalgam had a Young's modulus value comparable to that of enamel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call